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ABSTRACT
Motivation: We review proposed syntheses of probabilis-
tic sequence alignment, profiling and phylogeny. We de-
velop a multiple alignment algorithm for Bayesian infer-
ence in the links model proposed by Thorne et al. (1991, J.
Mol. Evol., 33, 114–124). The algorithm, described in de-
tail in Section 3, samples from and/or maximizes the pos-
terior distribution over multiple alignments for any number
of DNA or protein sequences, conditioned on a phyloge-
netic tree. The individual sampling and maximization steps
of the algorithm require no more computational resources
than pairwise alignment.
Methods: We present a software implementation (Handel)
of our algorithm and report test results on (i) simulated
data sets and (ii) the structurally informed protein align-
ments of BAliBASE (Thompson et al., 1999, Nucleic Acids
Res., 27, 2682–2690).
Results: We find that the mean sum-of-pairs score
(a measure of residue-pair correspondence) for the
BAliBASE alignments is only 13% lower for Handel

than for CLUSTALW (Thompson et al., 1994, Nucleic Acids
Res., 22, 4673–4680), despite the relative simplicity of
the links model (CLUSTALW uses affine gap scores and
increased penalties for indels in hydrophobic regions).
With reference to these benchmarks, we discuss potential
improvements to the links model and implications for
Bayesian multiple alignment and phylogenetic profiling.
Availability: The source code to Handel is freely dis-
tributed on the Internet at http://www.biowiki.org/Handel
under the terms of the GNU Public License (GPL, 2000,
http://www.fsf.org./copyleft/gpl.html).
Contact: ihh@fruitfly.org

1 INTRODUCTION
Most sequence profiling tools—including SAM (Karplus
et al., 1998), HMMER (Eddy, 1996) and PSI-BLAST
(Altschul et al., 1997), to name a few—use sequence
weighting to correct for phylogenetic bias in the training
set. Although this is a quick and effective correction for
over-representation, it is a shortcut compared to a full
phylogenetic model and, being a shortcut, it may miss
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Fig. 1. Sequence weighting schemes can miss important clues about
the selection pressures acting on a sequence family. In this example
showing the evolution of a single site of a protein molecule, the
ancestral residues on each side of the tree may be inferred to be
isoleucine and valine respectively. Given this fact, it can be seen that
two independent mutations to leucine have been fixed, suggesting
positive selection for this residue. However, a sequence weighting
scheme that did not attempt to model full phylogenetic correlations
would infer negative selection against leucine (Bruno, 1996).

potentially important clues about the selection pressures
acting on the sequence family. The phylogenetic context
of mutation events is significant in molecular evolution,
as mutations on short branches may indicate variations in
selection pressure, while an absence of mutation on short
branches conveys virtually no information (Figure 1).

As an improvement on weighted training, one may
consider evolutionary models of biological sequences
(Thorne et al., 1991, 1992; Bishop and Thompson,
1986; Mitchison and Durbin, 1995; Durbin et al., 1998;
Mitchison, 1999a; Hein et al., 2000; Hein, 2001). In
contrast to static models such as profile hidden Markov
models (HMMs), which give an instantaneous probability
distribution over sequences (and thus effectively treat
every sequence in the family as an independent realization
of the HMM (Krogh et al., 1994)), evolutionary models
give a joint distribution for all the sequences in a family
at once, conditioned on the tree that relates them. Thus
correlations between related sequences are built into the
model (Durbin et al., 1998).
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The simplest evolutionary model is a pairwise likelihood
for the relationship between two sequences. Call these two
sequences A (for ancestor) and D (for descendant). Then
the pairwise likelihood could be written as

Pr
[
A π→ D|t, �]

(1)

where π is a description of the evolutionary relationship
(or alignment) between the sequences, t is the evolution-
ary time separating the sequences and � covers any addi-
tional parameters of the model.

To be useful as a phylogenetic likelihood, equation (1)
should satisfy reversibility and additivity constraints.

The reversibility constraint may be expressed as

Pr
[
A π→ D|t, �] = Pr

[
D π̄→ A|t, �]

(2)

where π̄ is the inversion of the evolutionary relationship
π (the meaning of this inversion may be model-dependent,
but should essentially leave one-to-one residue alignments
unchanged). Intuitively, this means that there is no inher-
ent directionality to the branches of the tree; practically, it
means that the placement of the root node is irrelevant.

The additivity constraint may be expressed as∑
X ,π1,π2:π1◦π2=π

Pr
[
A π1→ X |t1, �

]
Pr

[
X π2→ D|t2, �

]
= Pr

[
A π→ D|t1 + t2, �

]
(3)

where X is a sequence and ‘◦’ is the operator for
conjoining two alignments (so that π1 and π2 are chosen
to be compatible subalignments of π ). Equation (3) is a
probabilistic statement that the sequence evolves through
time through a series of intermediate sequences.

Both additivity and reversibility are intuitive properties
of an evolutionary model. In addition, for the purposes
of doing multiple alignment (and training and database
searching), we would like to be able to infer the alignment
π given the sequences A and D alone. This can be done
without a combinatorial explosion if the Markov condition
applies, which is to say that the likelihood equation (1)
can be factored by splitting π into stepwise segments
along the sequence, where the probability of each segment
depends only on the alignment of the segments that come
immediately before. If this condition applies then standard
Dynamic Programming (DP) algorithms can be used to
infer π (or sum over it, or sample it) with complexity
linear in each sequence (see e.g. Durbin et al., 1998).

Given a likelihood of the form equation (1) that satisfies
equations (2) and (3), we can write down an expression
for the joint likelihood of a multiple alignment of a set
of sequences S related by a tree T . (The set S includes
all sequences at internal nodes of the tree, as well as leaf
sequences. In practise we usually observe leaf sequences

only; this amounts to a Bayesian ‘missing data’ problem
and will be discussed below.) The joint likelihood is found
by decomposing the multiple alignment into a set {π} of
pairwise branch alignments

Pr [{π},S|T , �] = Pr [root|�]
∏

b

Pr
[
Ab

πb→ Db|tb, �
]

(4)
where the tree T designates one node as the root and
assigns to every other (descendant) node Db an ancestral
node Ab, separated from Db by evolutionary time tb (the
length of branch b). The expression Pr [root|�] is the prior
probability of a single sequence (in this case, the root
node) according with the evolutionary model.

A number of time-dependent probabilistic alignment
models have been proposed in the molecular evolutionary
literature. It is instructive to review and compare these
models. At the time of writing, none of these models
have been implemented as a general-purpose multiple
alignment or profiling package.

1.1 Substitution models
Most of the proposed models deal with substitution only
and thus rely on the alignment being pre-specified. Gaps
in the alignment are either ignored, or are modeled as an
extra kind of residue (a twenty-first amino acid or fifth
nucleotide). This is the kind of model used by PSI-BLAST
(Altschul et al., 1997).

The most common substitution model is a classical
stochastic process: a continuous-time, finite-state Markov
chain with one state for each possible residue at a site
(Figure 2). A nonnegative matrix specifying transition
rates between residues characterizes the substitution
process; the exact transition probabilities at time t may be
obtained after diagonalizing this matrix.

The simplest kind of substitution model is identical
at each position of the sequence. Various refinements of
this model have been proposed, such as site-to-site rate
variation (Yang, 1993). It is even possible to ‘learn’ a
different equilibrium residue distribution for each site in a
sequence, and thus achieve the goal of modeling evolution
with site-specific constraints (Bruno, 1996).

Treating gaps as a special type of residue is a crude way
to model indels. In particular, this approach seems to favor
deletion over insertion, it leaves ‘ghost’ residues behind
in the wake of a deletion and it does not allow for large
deletions. It seems like we should be able to do better than
this in the post-HMM bioinformatics age.

1.2 The links model
A more gap-conscious model was proposed by Thorne et
al. (1991, 1992) and has recently been further analysed
(Hein et al., 2000; Hein, 2001). Their ‘links’ model is a
birth-death process with immigration, another canonical
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Fig. 2. A continuous-time finite-state Markov model for DNA
substitution. Each nucleotide is represented by a state in the Markov
chain.

stochastic system. At any instant, a single residue (link)
may spawn a new child or it may die; the former (birth)
event happens with rate λ, the latter (death) with rate µ.
Child residues are inserted adjacent to the parent residue
on the right-hand side. New residues are also injected into
the sequence at the left-hand end of the sequence with rate
λ (the immigration of the classical process; Thorne et al.
ascribe this to an ‘immortal link’).

The birth–death process yields a probability for the
indel structure of the alignment path π in equation (1).
The substitution probability, conditioned on the indel
path, is calculated as with the homogeneous substitution
models described above. (A clean separation between the
substitution and indel processes is a typical feature of
evolutionary HMMs.) The number of children spawned by
a single link after time t follows a geometric distribution,
as does the waiting time for a hidden Markov model
(Karlin and Taylor, 1975). Statistical estimation of the
indel path is thus reduced to the problem of aligning
two sequences to an HMM, which may be solved by DP
(Durbin et al., 1998). (This kind of two-sequence HMM
has been called a ‘Pair HMM’ and is described below.)

Although more agreeable than straight substitution mod-
els in many aspects, the links model has its drawbacks. It is
inherently homogeneous with respect to the sequence and
permits no long-term selective conservation: if the pro-
cess is run for time t 
 1/µ, all the links die and so all
information is lost. Furthermore, it makes no special al-
lowances for large indel events, although this is addressed
by the authors in a later paper (Thorne et al., 1992).

1.3 Tree HMMs
It is suggested that this section might be skipped on an
initial reading, as it is not required for the development of
the links model.

delete

match

Fig. 3. Two paths through a ‘tree HMM’. In the upper figure, the
path runs straight through the first two match states. At the third
match, the path is diverted down to the delete track (skipping the
fourth match). Finally it returns to the match track at the fifth match.
The situation in the lower figure is identical except that the second
match signal has flipped, diverting the path down into the delete
track one state earlier than before. At the fourth delete state, the
path rejoins its earlier course.

A model providing heterogeneity, long-term conser-
vation and large indels was proposed by Mitchison and
Durbin (1995) and has subsequently been developed
(Durbin et al., 1998; Mitchison, 1999a). This model is
called the ‘tree HMM’. It has certain similarities to profile
HMMs, the main one being that it associates hidden
information with a sequence.

A tree HMM may be pictured as a structured array of
arrows similar to signals (or points) along two parallel
railway tracks (Figure 3). The train runs from left to
right; its exact route is determined by the positions of the
signals. Each signal has two possible settings: ‘go straight
ahead’ or ‘cross over to the other track’. Suppose that these
railway signals are subject to thermal fluctuations: at any
instant, each may flip to its alternate possible state, so that
the statistical behavior of an individual signal is similar
to a residue in the substitution model described above. In
other words, each signal is modeled by a continuous-time
two-state Markov chain with a separate transition matrix
for each signal.

Now suppose that the signals are frozen in place and a
train moves along the track. The path of the train will be
determined by the instantaneous positions of the signals.
Every time the train passes a signal site on the top row, the
model emits a residue from a site-dependent probability
distribution. The bottom row of signals is silent. Thus
the top row contains ‘match’ states and the bottom row
‘delete’ states, in HMM terminology. However, in contrast
to the match states of standard HMMs, which model a
single-residue probability distribution, residues aligned to
match states of tree HMMs may be related by a full
substitution model.

As with the links model, inference of the alignment π
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is a dynamic programming problem. The underlying Pair
HMM has a chained structure.

The tree HMM is an attractive model. One drawback is
that it does not attempt to model insertions. Some sort of
fusion between the tree HMM and the links model might
remedy this, since the equilibrium distribution of the links
model mirrors that of an insert state in the profile HMM,
in the same way that the path through the match and delete
sites of the tree HMM converges on the distribution of
paths through the match and delete states of the profile
HMM.

Another drawback of the tree HMM is that, technically,
it does not yield likelihoods of the form equation (1), since
in that equation, A and D are sequences, whereas the
evolving entity here is ‘the flip-state of all the signals,
plus the residues at each match state’ which is more
information than is carried by the sequence alone. For
example, after a deletion, there may still be memory of
part of the deleted sequence being deleted previously,
and if reinsertion occurs, the old deletion will tend to be
restored as well. Any individual path only goes through
half of all the signals, and anyone observing the path
(or the sequence) alone cannot determine the flip-state
of the signals that are off the path. Thus, to obtain
something like equation (1), the flip-states of these signals
must be summed out. This leads to problems with the
additivity condition equation (3), particularly for short
times t (Mitchison, 1999a). However, these problems may
not present a serious drawback for practical use.

1.4 An implementation of the links model
As a step towards developing evolutionary models for
sequence alignment, we have implemented a general-
purpose multiple alignment algorithm based on the links
model. We consider this to be the simplest of the above-
described models capable of doing multiple alignment,
and one that may be useful in the design of more
sophisticated systems in future.

We first present the links model in the terminology of
Pair HMMs, and show how the likelihood for a multi-
ple alignment may be factored into pairwise branch like-
lihoods. We describe a set of Markov Chain Monte Carlo
(MCMC) sampling moves that are sufficient to achieve er-
godicity in the space of all alignments while preserving the
posterior distribution over sequence alignments. We note
that the actual sequences at internal nodes can be summed
out during alignment sampling, by replacing residues with
‘wildcards’. We present our program implementing these
ideas, Handel, the source code to which may be mod-
ified and redistributed free of charge by all users under
the terms of the GNU Public License (GPL, 2000). The
program includes experimental features such as simulated
annealing and a variant of over-relaxation (a method of ex-
ploring the alignment space at a rate faster than predicted

by Brownian drift while leaving the posterior distribution
unchanged). We describe the behavior of the program on
both simulated test cases and benchmark structural align-
ments. Finally we discuss certain computer science and
mathematical considerations that we hope may be helpful
in designing novel evolutionary models.

2 MODEL
Let us reprise the links model as set forth by Thorne et
al. (1991). Consider the legacy of an individual residue.
Let pn(t) be the probability that, at time t , it has survived,
spawning n descendants (including itself, its children, its
grandchildren, its great-grandchildren and so on). Since
the insertion rate is λ and the deletion rate is µ, the time-
evolution of pn(t) is described by

ṗn = λ(n − 1)pn−1 + µnpn+1 − (λ + µ)npn

with p1(t = 0) = 1, pn(t = 0) = 0 for n > 1, and taking
pn(t) = 0 for n � 0 at all t .

The other eventuality is that, by time t , the residue has
died leaving n descendants. Call the probability of this
event, qn(t). It evolves as follows

q̇n =
{

λ(n − 1)qn−1 + µ(n + 1)qn+1
+µpn+1 − (λ + µ)nqn for n > 0

µ(q1 + p1) for n = 0

with qn(t = 0) = 0 for all n.
We must also consider descendants of the immortal link

at the left-hand end of the sequence. Let rn(t) be the
probability that there are n such residues at time t ; then

ṙn =
{

λnrn−1 + µ(n + 1)rn+1
−λ(n + 1)rn + µnrn for n > 0

µr1 − λr0 for n = 0
.

The solutions to the above equations are

pn = αβn−1(1 − β)

qn = (1 − α)(1 − γ ) for n = 0

= (1 − α)γβn−1(1 − β) for n > 0 (5)

rn = βn(1 − β)

where

α(t) = e−µt

β(t) = λ(1 − e(λ−µ)t )

µ − λe(λ−µ)t
(6)

γ (t) = 1 − µ(1 − e(λ−µ)t )

(1 − e−µt )(µ − λe(λ−µ)t )

Conceptually, α is the probability of ancestral residue
survival, β is the probability of more insertions given one
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or more extant descendants and γ is the probability of
insertions given that the ancestral residue did not survive.

The limiting behavior for very long branches is

α(t) → 0
β(t) → λ/µ

γ (t) → 0


 as t → ∞. (7)

Since only β stays finite at large t , both pn and
qn tend to zero for n > 0, leaving only rn finite for
nonzero n. In other words, all ancestral residues and their
descendants tend inevitably to die away, leaving only
residues descended from the immortal link. The limiting
behavior of the distribution rn as t → ∞ thus gives the
equilibrium length distribution of the sequence, which is
geometric with mean λ/µ.

Note that λ < µ is a necessary condition to prevent the
sequence from tending to infinite length. The immortal
link is then required to prevent the sequence from tending
to zero length.

2.1 The links model as a Pair HMM
Equations (5) and (6) may be framed succinctly using
a type of hidden Markov model called a ‘Pair HMM’
(Durbin et al., 1998). A Pair HMM is similar to a standard
sequence-emitting HMM (a ‘Single HMM’), but instead
emits residues in two separate sequences. An alignment
of two sequences to a Pair HMM implicitly aligns the
sequences to each other as well. Pair HMMs have been
used to obtain posterior probabilities for residue corre-
spondence (Miyazawa, 1994), to recast standard pairwise
sequence comparison algorithms in a probabilistic form
(Bucher and Hofmann, 1996), and to study the accuracy
of such algorithms analytically (Holmes and Durbin,
1998).

For our purposes, emitting states in a Pair HMM come
in three flavours: either a state can emit residues in one or
other of the two sequences, or it can emit residues in both
sequences at once. These three kinds of state correspond to
the three directions of score propagation in a pairwise DP
matrix (e.g. as used by the Smith–Waterman algorithm)
and may be thought of as match, insert and delete states.
We also introduce ‘null’ (non-emitting) states to simplify
the model.

The Pair HMM for the links model is shown in Figure 8
(the tree on which this model is based is shown in
Figure 4). The central recurrent loop of this model uses all
three types of state and describes the fate of an individual
ancestral residue. Either the residue lives (match state) or
dies (delete state). In each case it spawns a geometrically-
distributed number of ancestor residues (insert state)
although the geometric distribution is subtly altered if
the ancestor dies (the match→insert and delete→insert
transitions have different probabilities).

X
t

Y

Fig. 4. A single-branch tree for an ancestor (X ) and a descen-
dant (Y ). The branch length is t .

Note that a cursory inspection of Figure 8 reveals no di-
rect delete→delete transition. This is because a deleted an-
cestral link may have given birth to orphaned descendant
links. If transitions via null states are considered, however,
there is a direct self-transition from the delete state with
probability λ

µ
(1 − γ )(1 − α).

The path likelihood for the Pair HMM of Figure 8
is as in equation (1), i.e. Pr [A π→ D| . . .]. Here the
evolutionary relationship π is taken to be the path through
the Markov model. This Pair HMM can be used to derive
a Single HMM modeling Pr [A| . . .], the equilibrium
probability of any sequence, by summing out descendant
emissions in the Pair HMM. Furthermore, a Single HMM
modeling Pr [A π→ D|A, . . .], the conditional probability
of a descendant sequence given its ancestor, can also be
derived. Such an HMM can be represented as a profile
HMM as implemented by SAM or HMMER .

Inference of the alignment of the two sequences, π ,
employs dynamic programming. (Recall that π describes
the evolutionary relationship between the sequences.)
The optimal value of π may be obtained using the
Viterbi algorithm; alternatively, the Forward algorithm
can be used to calculate the sum-over-alignments likeli-
hood Pr [A → D] = ∑

π Pr [A π→ D] or to sample an
alignment from the posterior distribution Pr [π |A → D].

These algorithms (Forward/Viterbi) and other standard
HMM algorithms have been described with application
to biological sequence analysis in the published literature
(Durbin et al., 1998; Holmes, 2000). We assume some
familiarity with these algorithms; the novice reader is
referred to the textbook by Durbin et al. (1998).

There is one last point to note about the Pair HMM
for the links model. Recall that our reversibility criterion
for an evolutionary model, equation (2), required that an
inversion relationship π̄ be defined for all alignments π .
For the links model, the inversion requires swapping insert
and delete states in the path, except for those regions of the
path where there are even numbers of alternating insert
and delete states (see Figure 7 for an example). That this
path inversion satisfies reversibility in general may be seen
by considering the effect of the transformation on the Pair
HMM transition matrix.

2.2 From Pair HMMs to Multiple HMMs
We now introduce the concept of a ‘Multiple HMM’. Just
as a Pair HMM emits residues in two sequences using
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t1

t2

X

Z

Y

Fig. 5. A simple binary tree. The root node is X and the two children
are Y and Z .

t1

t2 Z

X

Y

t3
W

Fig. 6. A tree for a node (X ) with a parent (W ) and two children (Y
and Z ).

three types of emit state (plus null states), a Multiple
HMM emits residues in N sequences using up to 2N − 1
types of emit state (one for every non-empty subset of
the N sequences). The Viterbi and Forward algorithms
for alignments of N sequences to a Multiple HMM use
N -dimensional dynamic programming matrices.

Given an evolutionary tree relating N sequences (includ-
ing the sequences at internal tree nodes), one can construct
a composite Multiple HMM analogous to the Pair HMM
shown in Figure 8 by considering the ancestor–descendant
relationship of every branch. For example, the three-node
tree in Figure 5 has the HMM shown in Figure 9, and the
four-node tree in Figure 6 has the HMM shown in Fig-
ure 10. Note how the HMM structure of Figure 8 is em-
bedded in Figure 9; likewise, Figure 9 is embedded in Fig-
ure 10.

It is useful to visualize composite Multiple HMMs
and their relationship to the factorization of equation (4).
There is an algorithm to construct a composite Multiple
HMM for any evolutionary Pair HMM and tree T , such
that the likelihood function for this Multiple HMM is
equal to Pr [{π},S|T , �] of equation (4) (unpublished).
When this algorithm is applied to the links model, it
produces an HMM whose Forward recursion is identical
to a dynamic programming recursion described by Hein
(2001).

Not all dynamic programming to Multiple HMMs has to
be N -dimensional, and we have developed ways to sample
alignments without recourse to such impractical measures.

Y:
X:

State:

a-ggt-c-g-cat-g-g
atgg-gct-a-att-tg
MDMMDIMIDIDMMDIDM

Y:
X:

State: MIMMDIMIDIDMMIDIM

a-gg-tcg-c-at-g-g
atggg-c-t-aatt-tg

Fig. 7. The time-reversibility path inversion for the links model Pair
HMM, as described in Section 2.1. Swapping the directionality of
the X → Y branch entails swapping D and I states (i.e. flipping
the alignment). In regions where there are runs of DI s or I Ds, the
order of adjacent columns is also swapped, so that a DI effectively
stays a DI and an I D stays an I D. Only even-numbered runs of
Ds and I s are treated in this way; the length-3 state sequence DI D
near the end of this pairwise alignment is flipped to I DI . Note that
the effect of this path inversion is the same as if the sequences had
been reversed. The sufficiency of this for reversibility may be seen
by considering that in the links model, insertions appear to the right
of their parents.

By constraining the pairwise alignments along subsets of
all tree branches (and the inferred sequences at subsets
of all tree nodes), we provide a Gibbs sampler for the
likelihood function described in equation (4). Progressive
alignment and refinement algorithms are obtained by
replacing the construct ‘sample an alignment π using the
Forward algorithm’ with ‘find the optimal alignment π

using the Viterbi algorithm’ in the Gibbs sampler code.

2.3 Composing a multiple alignment from
pairwise branch alignments

From the above treatment (in particular equation 4) it
should be clear that, for the present work (as with previous
work by others) a multiple alignment is a composition
of pairwise branch alignments. The multiple alignment
represents the complete evolutionary history of all the
sequences, whereas the pairwise alignments represent the
individual historical accounts of each branch.

For our alignment algorithm, we need a well-defined and
unambiguous way of decomposing a multiple alignment
into a set of pairwise branch alignments for neighboring
nodes. More generally, it is useful to obtain the pairwise
alignment of any two nodes of the tree (not just neighbor-
ing nodes). Conversely, we need a way of composing a
multiple alignment from a complete set of pairwise align-
ments. (A useful generalization of this task is to find the
optimal multiple alignment given an incomplete pairwise
alignment set.)
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α

1−α
γ

β

1−β

1−β

1 1

1

1−γ

λ/µ

1−λ/µ

βX
Y

X
-

-
Y end

(mat)

(ins)
start

(del)

Fig. 8. The Pair HMM for the links model on the single-branch tree shown in Figure 4. Null states are shown as small circles and emit states
as large circles. The parameters α, β and γ are related to the branch length t as described in equation (6).
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-

X
Y

X
-

-
Y

-
Y

end

start

X
Y
Z

Z

-

-

-

-

Z

-
-

Fig. 9. The Multiple HMM for the binary tree of Figure 5. Note that α1 = α(t1), α2 = α(t2), etc., according with equation (6).

The algorithms to do this will not be described in full,
but the essential rule is as follows: residues Xi and Y j

in a multiple alignment containing sequences X and Y

are considered to be aligned if and only if both of the
following conditions hold:

• the residues Xi and Y j are in the same column;
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Fig. 10. The Multiple HMM for the tree of Figure 6. Note that α1 = α(t1), α2 = α(t2), α3 = α(t3), etc., according with equation (6).

• the column contains no gap characters for any of the
sequences intermediate to X and Y on the tree.

The ‘intermediate’ sequences of the second clause
include any sequences in the lineages A → X or A → Y ,
where A is the most recent common ancestor of X and Y
(according to the tree). This clause stipulates that residue
deletion followed by re-insertion at the same position does
NOT constitute a direct evolutionary relationship under
this model (in agreement with Thorne et al.) and there
should be no correlation between such residues. (To affirm
this, note that Figure 10 contains no states that emit both
W s and Y s without emitting Xs; this is because X is
intermediate to W and Y in Figure 6.) Thus alignment
columns may be subdivided into ungapped cliques.

These rules, together with the stipulation that empty (all-
gap) columns be ignored, provide an unambiguous way of
converting multiple alignment into a set of pairwise branch
alignments (and vice versa) given a guide tree.

2.4 Eliminating internal nodes
Often, the actual inference of ancestral sequences (at
internal nodes of the tree) is unnecessary. In Bayesian
language, these sequences are ‘missing data’ and the
correct thing to do would be to sum them out of the
likelihood function.

Unfortunately, summing over the indel histories of
these sequences means relinquishing the branch-to-branch
independence that allows us to conveniently factorize the
likelihood function as in equation (4). In other words, if
we consider all indel histories then we find ourselves again
with a high-dimensional dynamic programming problem.

Despite the indel histories remaining intractable, we
can sum over all substitution histories for a given mul-
tiple alignment using the post-order traversal algorithm
of Felsenstein (1981) In computing a column (clique)
likelihood, this algorithm stores conditional likelihoods
for all the residue possibilities at missing nodes. (Note
that a post-order traversal of a tree visits children before
parents.)

Conditional distributions for any missing residue in the
alignment can be calculated in this way. The conditional
distributions for entire missing sequences can be modeled
by profile HMMs.

Whenever internal sequences are summed out by the
Handel software in calculating an alignment score, the
corresponding multiple alignment is printed with asterisk
characters (‘*’) for the residues of internal sequences.
Note that these differ in meaning from the standard
IUPAC ambiguous characters (‘N’ for DNA, ‘X’ for
protein). Where the score for a standard IUPAC character
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is typically taken to be a (possibly weighted) average
of all possible residue scores, our wildcard asterisk is
scored as a probabilistic sum over all residues. Thus the
score for matching a random protein residue to an ‘X’
is typically negative, whereas the score for matching the
same residue to a ‘*’ is always zero. Since this summing
out of internal residues essentially reprises the Felsenstein
algorithm (Felsenstein, 1981), we refer to the asterisks as
Felsenstein wildcards.

The intractability of summing out the indel histories
at internal nodes remains a problem: without a way
of eliminating these artefacts from the analysis, we
are stuck with a maximum likelihood solution and our
Bayesian expressiveness is restricted. In MCMC analysis,
computational intractabilities like this are circumvented
by sampling extensively from the posterior distribution.
This is the approach taken by Handel. We proceed by
describing the Gibbs sampling moves that we use to
navigate alignment space.

3 ALGORITHM
The most popular kind of multiple alignment algorithm
is progressive alignment, whereby profiles for missing
parents are estimated by aligning sibling sequences
on a post-order traversal of the underlying binary tree
(Feng and Doolittle, 1987; Barton and Sternberg, 1987;
Taylor, 1987; Thompson et al., 1994). Recent algorithms
have employed iterative refinement, revisiting branches
following the initial alignment phase (Morgenstern et al.,
1996). We henceforth refer to progressive alignment as
‘impatient’ and iterated refinement as ‘greedy’ strategies.
A third (patient, non-greedy) strategy is to sample from
a population of alignments, exploring suboptimal align-
ments in anticipation that short-term sacrifices will yield
long-term improvements (Eddy, 1995; Notredame and
Higgins, 1996).

All of the above types of strategy are used by Handel.
We begin by describing the sampling strategy, being the
most principled approach (from a Bayesian viewpoint)
from which the former two strategies can be derived.

Conceptually, a Handel multiple alignment consists
of (i) a binary tree; (ii) a set of observed (leaf-node)
sequences; (iii) a set of probability profiles for miss-
ing (internal-node) sequences (typically containing
Felsenstein wildcards) and (iv) a pairwise alignment
associated with each branch. Probability profiles over
internal sequences behave like Plan 7 profile HMMs
(hmmer.wustl.edu).

Three types of ‘move’ are used to explore alignment
space. The goal of these moves is to provide ergodicity,
i.e. to provide a set of edit operations that, by composition,
allow any one alignment to be transformed into any other
alignment. (We do not consider edit operations on the
underlying phylogenetic tree; for a treatment of this see

Mau et al., 1996). We first discuss the motivation for each
move, then describe the move slightly more formally.

The first move mirrors the sibling alignment step
of impatient-progressive alignment. Given two sibling
sequences, their alignment is sampled. The length of the
parent sequence is implicitly sampled at this stage as well.

• Move #1: parent sampling

— The goal is to align sibling nodes Y and Z
and simultaneously infer their parent node X
(see Figure 5).

— Construct the Pair HMM for X , Y and Z
(see Figure 9. Technically, this is a Multiple HMM
and not a Pair HMM, but since X is missing data,
the dynamic programming matrix is still only
two-dimensional).

— Sample the alignment of Y and Z using the
Forward algorithm.

— Deduce the implicit alignments XY and X Z and
the sequence X .

The second move mirrors the branch alignment step of
greedy-refined alignment. Given a branch, the pairwise
alignment for that parent–child sequence pair is resam-
pled, by applying the Forward algorithm to Figure 8. This
move resamples alignments inferred during the impatient-
progressive phase.

• Move #2: branch sampling

— The goal is to realign the adjacent nodes X and Y
(see Figure 4).

— Fix all pairwise branch alignments except branch
XY .

— Construct the Pair HMM for X and Y (see Figure 8).

— Resample the alignment of X and Y using the
Forward algorithm.

The third move completes the ergodicity requirement.
Given any internal node, the sequence at that node
is resampled by inserting or deleting residues without
disturbing the pairwise alignment of adjacent nodes. This
move resamples parent sequence lengths inferred during
the impatient-progressive phase.

• Move #3: node sampling

— The goal is to resample the sequence at internal
node X .

— Let the parent of X be W . Let the children of X be
Y and Z (see Figure 6).

— Fix all pairwise branch alignments except branches
W X , XY and X Z .
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— Construct the Multiple HMM for X and its neigh-
bours (see Figure 10).

— Resample the sequence X , conditioned on the
relative alignment of W , Y and Z . (In other words,
all variants of the original multiple alignment
having either a residue or a gap character at each
column of row X are considered. Furthermore,
each column may be followed by zero or more
inserted columns containing a residue in row X
and a gap character in all other rows. This yields a
dynamic programming problem whose complexity
is linear in the original alignment length.)

Each of the three moves relies on the decomposition
of the joint multiple alignment likelihood into a product
of pairwise branch likelihoods, as in equation (4). Each
involves fixing or partially constraining some or all of
the pairwise branch alignments and sampling from the
resulting subspace. Since the moves sample exactly from
conditional distributions, they satisfy detailed balance
(Gilks et al., 1996). Our algorithm thus generates an
unbiased sample from the posterior distribution over
alignments.

The Gibbs sampler proceeds as follows: firstly, a multi-
ple alignment is constructed from unaligned sequences by
parent sampling up the guide tree; secondly, each branch
and node is visited once (but in a random order) for either
branch sampling or node sampling respectively (the fre-
quency of node sampling versus branch sampling moves
is specified by the user). The second step is repeated to
generate as many samples as required.

For each of the sampling moves, a maximum-likelihood
equivalent may be obtained by replacing the sampling step
(the Forward algorithm) with an optimization step (the
Viterbi algorithm). Thus, impatient-progressive alignment
(Thompson et al., 1994) corresponds to application of
the maximum-likelihood version of parent sampling and
greedy-refined alignment corresponds to application of
the maximum-likelihood versions of branch sampling and
node sampling.

As well as using Gibbs sampling in a Bayesian con-
text to average over suboptimal alignments, we are inter-
ested in using it in a maximum-likelihood context to in-
ject noise and escape locally optimal solutions. Thus, the
maximum-likelihood version of the Gibbs sampler peri-
odically saves the current alignment, applies the greedy-
refinement algorithm, records the likelihood of the refined
alignment then restores the saved alignment. At the end
of the sampling run, the refined alignments are consid-
ered along with the sampled alignments, and the alignment
with the highest likelihood is picked. The suggested period
for greedy-refinement is the correlation time of the Gibbs
sampler.

A related strategy for escaping local optima is simulated
annealing (Kirkpatrick et al., 1983). This has been applied
to multiple alignment (Lukashin et al., 1992; Kim et al.,
1994). A simulated annealing version of our algorithm,
with a variable temperature parameter T , may be obtained
by raising all ‘probabilities’ to the power 1/T . It is
possible to sample from the (fixed-temperature) posterior
distribution using annealing methods (Neal, 1998).

Commonly, a multiple alignment is produced using
a program that either does not recognize the existence
of sequences at internal nodes or does not output said
sequences. A multiple alignment from such a program
may be adapted for the links model by using node
sampling to infer internal sequences consistent with the
supplied alignment.

3.1 Ordered over-relaxation
A problem with Gibbs sampling and other MCMC
methods is that a random walk on a Markov chain follows
Brownian motion statistics, i.e. the root-mean-squared
drift grows only as n1/2 where n is the number of steps
taken.

This is a fairly slow way of exploring alignment
space. It would be faster if we could make the random
walk somewhat self-avoiding, i.e. build in some kind
of heuristic to ‘boldly go where no alignment has gone
before’ rather than retreading old turf. But can this be done
without destroying detailed balance, so that the algorithm
still emits alignments from the posterior distribution?

The answer is yes, it can, using a technique developed
by Neal (1995). The key is to define a strict weak ordering
on alignments, i.e. a consistent sort relation that places
similar alignments together. (In our software, we sort by
the centroid of all match states resolved transverse to the
main diagonal of the dynamic programming matrix.)

Once the order statistic is defined, it may be used to
deter self-repeating sampling behaviour by sampling N
new alignments at each Gibbs sampling move (instead of
just one). The N alignments, plus the original alignment,
are then sorted. If the position of the original alignment
in the sorted list is k, then the (N − k)th alignment
in the list is chosen to be the new one. This procedure
is known as ‘ordered over-relaxation’ and a symmetry
argument demonstrates that it preserves detailed balance
(Neal, 1995). Sampling N alignments from a forward
matrix is not significantly more computationally expensive
than sampling one, since resampling can be carried out
without recomputing the matrix.

4 IMPLEMENTATION
The algorithms described here are implemented in the
Handel package, which is available from http://www.
biowiki.org/Handel. Handel is written in C++ for a
Unix system and distributed under the GNU Public
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License (GPL, 2000). The code compiles cleanly using
the gcc compiler version egcs-2.91.66 or later. It was
developed under RedHat Linux version 6.0.

The package consists of three programs (prefixed tkf
after Thorne, Kishino and Felsenstein, who first described
the links model):

• tkfemit, given a guide tree, generates an alignment
from the links model;

• tkfdistance, given a set of sequences (aligned or
unaligned), estimates a distance matrix under the links
model by using bracketed minimization (Press et al.,
1992) to find the ML time parameter for each sequence
pair;

• tkfalign, given a set of sequences and a guide tree,
samples alignments from the posterior distribution
and/or attempts to find the highest-scoring alignment.

The following are specifiable by the user:

• the birth and death rates λ and µ (or, equivalently,
the mean sequence length λ/µ and the total indel rate
λ + µ);

• the substitution rate matrix (specified as a sym-
metric matrix Q together with an equilibrium
residue probability vector p; the reversible (generally
non-symmetric) rate matrix derived from this is
P1/2QP−1/2 where P is a diagonal matrix whose
diagonal elements are the entries of p, i.e. Pi j = piδi j
(Bruno and Arvestad, 1997)). The Dayhoff PAM series
is provided as a default option for proteins (Dayhoff et
al., 1978), as is the 6-parameter transition/transversion
model with nucleotide bias for DNA (Hasegawa et al.,
1985);

• various control parameters for the Gibbs sampler
including the number of sampling rounds, the ratio
of Branch Sampling to Node Sampling moves, the
annealing schedule and the number of trials for ordered
over-relaxation.

We avoid a full description of the Handel software
architecture here, but note that it employs a generic
dynamic programming engine (inspired by the Dynamite
project (Birney and Durbin, 1997)) for probabilistic work
with Single and Pair HMMs of arbitrary topology, as well
as custom DP code for the Multiple HMMs of Figures 9
and 10. It also uses a logging and exception-handling
framework that is customizable by the user at run-time.
For example, if the user specifies the ‘-log BREAKDOWN’
option on the command line, a full breakdown of the
alignment log-likelhood by branch and node is reported
at each sampling step. Likewise, DP matrices, tracebacks,
HMM transition probabilities, substitution matrices and

many other intermediate computation results can be
selectively output (to files or standard error) without
recompiling the code. The infrastructure supporting these
features is provided by the DART (DNA/Amino/RNA
tools) library (Holmes, 2000).
Handel also links to some external open source li-

braries, namely Newmat09 for linear algebra (Davies,
1999) and randlib for random number generation
(Brown et al., 1997).

We tested Handel on simulated data. We report the
results of these tests as well as the behaviour of the
algorithm on real biological sequences. In view of the
performance of the algorithm on real data we suggest a
number of improvements to the links model to improve its
suitability for practical use.

4.1 Tests on simulated data
As a control test of the multiple alignment algorithm’s
ability to reconstruct evolutionary histories that are known
to fit the links model, we generated trees from a Yule
process (Durbin et al., 1998) and then generated multiple
DNA sequence alignments using Handel’s tkfemit
program. Various different settings were tried for the
number of leaf sequences, the mean sequence length, the
mean speciation time of the Yule process and the indel
rate.

We then tested several different variants of the align-
ment algorithm, with the aim of comparing impatient-
progressive (i.e. single-pass maximum likelihood
alignment), greedy-refined (i.e. multi-pass maximum
likelihood alignment) and a number of different sampling
strategies.

Firstly, we calculated a distance matrix from the un-
aligned leaf sequences using Handel’s tkfdistance
program and estimated a tree from this using weighbor
(Bruno et al., 2000). We then ran the following exper-
iments using Handel’s tkfalign program (driven by
Perl scripts):

A. Starting from the full correct alignment, remove the
sequences corresponding to internal nodes. Keeping
the alignment of the leaf nodes fixed, re-estimate
the indel history of the internal sequences, without
using knowledge of which branches underwent
substitutions (i.e. replacing the internal sequences
with Felsenstein wildcards).

B. Starting with the unaligned leaf sequences and
the distance matrix, do an impatient-progressive
alignment, using wildcard residues at internal nodes.
(Recall that the impatient-progressive strategy does
a single pass over the tree from the leaves upwards,
estimating maximum-likelihood indel histories for
internal nodes.)
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C. Starting with the alignment generated by experi-
ment B, do a greedy-refined alignment. (Recall that
the greedy-refined strategy does multiple passes
over the tree, re-aligning until there are no more
improvements to be found.)

D. Starting with the alignment generated by exper-
iment C, do 100 sampling moves, followed by
greedy-refinement. Felsenstein wildcards are used
for the sequences at internal nodes. Each sampling
move is chosen to be node sampling (at a random
node) or branch sampling (at a random branch) with
equal probability.

E. Starting with the alignment generated by experi-
ment C, do 100 simulated annealing steps (from
kT = 2 down to kT = 0), followed by greedy-
refinement. Felsenstein wildcards are used for
the sequences at internal nodes. Each simulated
annealing move is chosen to be node sampling (at
a random node) or branch sampling (at a random
branch) with equal probability.

F. Starting with the alignment generated by exper-
iment C, do 100 ordered over-relaxed sampling
moves, each with a trial set size of 11, followed
by greedy-refinement. Felsenstein wildcards are
used for the sequences at internal nodes. Each
over-relaxed sampling move is chosen to be node
sampling (at a random node) or branch sampling (at
a random branch) with equal probability.

G. Starting with the alignment generated by exper-
iment C, do 100 sampling moves without using
Felsenstein wildcards for internal-node sequences,
followed by iterative refinement. Each over-relaxed
sampling move is chosen to be node sampling (at
a random node) or branch sampling (at a random
branch) with equal probability.

All experiments except A used the tree generated by
weighbor (experiment A used the original simulated
tree). For the sampling moves, the frequencies of branch
sampling and node sampling were set to be equal.
All algorithms summed over the residues of internal
sequences (i.e. used wildcards rather than attempting to
estimate the exact sequence) unless otherwise stated. The
parameter settings to run tkfalign were set equal to
those used with tkfemit.

The results of these simulation experiments are plot-
ted in Figures 11 and 12. Figure 11 shows normalized
log-likelihoods for the alignments generated by experi-
ments A–G under various different conditions.

Let us consider the experiments in turn. Experiment A—
replacing internal-node sequences by wildcards—is
something of a control, to determine how the use of
wildcards affects the log-likelihood. As expected, the

log-likelihood always increases, by from 5 to 25% in
these tests. However, impatient-progressive alignment
(experiment B) yields, in all these test cases, a multiple
alignment with a higher likelihood than the true align-
ment, indicating that (on average) the true alignment is
not the highest-scoring one.

The likelihoods for experiment C (greedy-refinement)
are higher than for B; furthermore, the variation in these
likelihoods is smaller, indicating that greedy-refinement
not only finds higher-scoring alignments but does so with
better reproducibility. The same trend is evident, although
less marked, when comparing experiment C to experi-
ments D–F (sampling, annealing and over-relaxation).
Little distinction is evident between D, E and F, however,
suggesting that the method of sampling employed does
not greatly affect the rate of convergence to the maximum
likelihood alignment, at least for DNA sequences under
these simulated conditions.

The final datapoint, experiment G, shows the likelihoods
obtained in estimating residues at internal nodes, rather
than using Felsenstein wildcards. It is interesting to
note that this likelihood is in all cases higher than for
experiment A. In other words, the maximum alignment
likelihood is significantly greater than the sum over all
alignments of leaf sequences consistent with the true
alignment, indicating that the true signal is rivalled by
noise.

The above observations hold valid for all the parameter-
izations tried in these experiments. In general, the gains in
log-likelihood due to wildcards (A), impatient-progressive
alignment (B), greedy-refinement (C) and sampling (D)
are reduced as the ‘noise’ parameters are increased.

Figure 12 gives some idea of the accuracy of these
procedures, measured by the symmetrized Sum-of-Pairs-
Score (SPS), the probability that any two residues will
be correctly aligned (Thompson et al., 1999). Little
difference is discernible between experiments B–G,
except perhaps a slight improvement following greedy-
refinement. This may be because the sampling runs did
not converge or because the signal-to-noise ratio is too
low in these tests (Hwa and Lässig, 1998; Holmes and
Durbin, 1998).

4.2 Tests on biological data
We tested Handel on five sets of reference alignments
from BAliBASE, a database of structurally informed
multiple alignments with annotations specifying the
meaningful ‘core’ segments (Thompson et al., 1999).
We tried three different algorithms on the BAliBASE
sequence datasets:

K. Construct a distance matrix using the tkfdistance
program in Handel. Estimate a tree using
weighbor (Bruno et al., 2000). Do an impatient-
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Fig. 11. Rescaled log-likelihoods for the simulation experiments of Section 4.1. All simulations used the 6-parameter nucleotide substitution
model (Hasegawa et al., 1985) with substitution rate 1 and transition/transversion ratio 4. Trees were generated from a Yule process with
mean speciation time t . The birth–death parameters were determined by the total indel rate i = λ + µ and by the mean sequence length.
The points and error bars show 95% confidence limits for the mean fractional change in log-likelihood (relative to the true alignment) over
1000 trials per experiment, assuming the central limit theorem applies. The log-likelihoods in this plot were normalized relative to the true
alignments to allow for the wide variability induced by our procedure of generating a new tree for each trial using a Yule process. The
individual experiment parameters were as follows. Upper left: 6 leaf sequences, mean length 50 nt. Upper right: 12 leaf sequences, mean
length 50nt. Lower left: 24 leaf sequences, mean length 100 nt. Lower right: 48 leaf sequences, mean length 100 nt.

progressive alignment using the tkfalign
program.

L. Apply greedy-refinement to the alignment produced
by K using Handel’s tkfalign program.

M. Apply the Gibbs sampler with ordered over-
relaxation and periodic refinement to the alignment
produced by L, using Handel’s tkfalign pro-
gram. The period for refinement is 10(1 + N log N )

where N is the number of sequences to be aligned.
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Fig. 12. Symmetrized Sum-of-Pairs Score (SPS) for the simulations described in Section 4.1 and Figure 11. The SPS score is defined to be
the probability that any two aligned residues from the reference alignment are aligned in the test alignment (Thompson et al., 1999). For
these tests a symmetrized SP score (i.e. averaged with the reference and test alignments swapped) was used. The parameters are as defined
in Figure 11. As with Figure 11, the error bars show 95% confidence limits for the mean SPS of each experiment.

The total number of samples is 1 + N log N
times the refinement period. (Note that N log N is
proportional to the time taken to sort the tree.)

Release 2.01 of BAliBASE was used for these tests. The
benchmark was conducted without any optimization of
Handel’s parameters: the default settings (mean sequence

length 50, total indel rate 0.1, Dayhoff substitution model)
were used for all tests. Brief descriptions of the BAliBASE
categories may be found in Table 1.

The results of the BAliBASE benchmark are summa-
rized in Tables 2 and 3. Table 2 lists the mean (unsym-
metrized) SPSs for each BAliBASE category, whereas
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Table 1. BAliBASE categories (Thompson et al., 1999)

BAliBASE Description of
subdirectory aligned sequences

ref1/test1 Equidistant, similar lengths;
high identity (>35%)

ref1/test2 Equidistant, similar lengths;
medium identity (20–40%)

ref1/test3 Equidistant, similar lengths;
low identity (<25%)

ref2/test1 Highly-related family (>25%)
plus ‘orphan’ outliers (<20%)

ref3/test Equidistant divergent subfamilies
(<20% between subfamilies)

ref4/test N/C terminal extensions
ref5/test Insertions

Table 2 lists the more exacting TCSs (Total Column
Scores). For comparison, the SPS and TCS for the popular
alignment program CLUSTALW (Thompson et al., 1994)
are displayed alongside the Handel scores for each test.

Comparing the Handel tests (K, L and M) to one
another, a general improvement is seen in going from
impatient-progressive alignment to greedy-refinement
(K → L) and again from greedy-refinement to sampling
(L → M). The mean scores do not tell the full story here:
overall, 62% of the test sets showed an increased SPS
in going from impatient-progressive to greedy-refined
alignment, with only 27% decreasing. An increase in
quality (again measured by SPS) was also observed going
from greedy-refined to sampled alignment, with 42% of
the test alignments improving and only 19% deteriorating.
The improvements were most prevalent for datasets
ref2 and ref3, whose phylogenies have long internal
branches. The gains in quality are not huge (as testified by
the mean scores) but they are significant.

In general, Handel performs less well than CLUSTALW,
correctly aligning 13% fewer residue pairs and 19% fewer
exact columns. The differences are most marked for
the ref4 category (N/C terminal extensions), followed
by ref3 (divergent families) and ref5 (insertions). A
possible explanation for the ref4 performance is that the
links model is global and is thus poorly equipped to deal
with N/C-terminal extensions; nor does it model affine
gaps (i.e. single-event large indels). This latter fact may
also explain the performance on the ref5 benchmark.
As for ref3, we note that the links model does not
make any attempt to profile the protein, whereas the
CLUSTALW algorithm contains several profiling-like steps
that implicitly introduce prior knowledge of both indel and
substitution patterns in nature (see e.g. Durbin et al., 1998,
for a discussion). Another difference between CLUSTALW
and Handel is that CLUSTALW uses the BLOSUM series

Table 2. Mean SPS for the reference alignments in BAliBASE, using the
tests described in Section 4.2

BAliBASE Handel 〈SPS〉 CLUSTALW

subdirectory K L M 〈SPS〉

ref1/test1 0.775 0.784 0.774 0.884
ref1/test2 0.673 0.689 0.693 0.790
ref1/test3 0.654 0.658 0.669 0.787
ref2/test1 0.814 0.827 0.839 0.928
ref3/test 0.481 0.525 0.528 0.693
ref4/test 0.348 0.359 0.372 0.672
ref5/test 0.573 0.603 0.622 0.789
All 0.660 0.675 0.681 0.812

The SPS is defined by Thompson et al. as the frequency with which any
two residues from the same column of the reference alignment are correctly
aligned in the test alignment (Thompson et al., 1999). As in Thompson et
al. (but unlike Figure 12) the SPS for these tests was not symmetrized with
respect to the reference and test alignments. The SPSs for the CLUSTALW
program (Thompson et al., 1994) are displayed for comparison.

Table 3. Mean Total Column Score (TCS) for the reference alignments in
BAliBASE, using the tests described in Section 4.2

BAliBASE Handel 〈TCS〉 CLUSTALW

subdirectory K L M 〈TCS〉

ref1/test1 0.640 0.656 0.653 0.826
ref1/test2 0.535 0.553 0.559 0.677
ref1/test3 0.519 0.523 0.533 0.688
ref2/test1 0.266 0.292 0.330 0.595
ref3/test 0.083 0.118 0.111 0.342
ref4/test 0.001 0.001 0.021 0.355
ref5/test 0.277 0.330 0.333 0.545
All 0.401 0.420 0.431 0.627

The TCS is defined as the frequency with which entire columns from the
reference alignment are exactly reproduced in the test alignment
(Thompson et al., 1999). The TCSs for the CLUSTALW program
(Thompson et al., 1994) are displayed for comparison.

of substitution matrices (Henikoff and Henikoff, 1992)
which may be better models for long-time conservation
but do not satisfy the additivity constraint of equation (3).
Thus CLUSTALW should do—and does—markedly better
at reconciling the divergent families of ref3.

All of the above points indicate areas in which the links
model might be improved. Suggestions as to how some
of these improvements (elementary profiling, variable-size
indels) might be achieved were advanced by Thorne et al.
(1992) in their second publication on the links model.

As a footnote to the above discussion, it should in fair-
ness be noted that the BAliBASE benchmark inherently
favors global alignment algorithms (such as Handel’s)
over local algorithms, since trimmed sequences are used
for the alignments. The performance of Handel at local
alignment has not been evaluated. However, it may be pos-
sible to garner some idea from the performance on BAl-
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iBASE reference set ref4, as the N/C terminal extensions
of these alignments are similar to the troublesome ‘ragged
ends’ faced by local algorithms.

The comparison of a reference alignment with a single
test alignment is fundamentally a maximum likelihood
approach. It would be interesting to see how Handel
fares in a Bayesian benchmark, e.g. finding the expectation
of the SPS and TCS measures over the whole posterior
distribution.

5 DISCUSSION
On the face of it, Bayesian multiple alignment has many
attractions. Primarily, it is transparent: the underlying
model is clearly defined and all the parameters appear in
the likelihood function (and may, as a consequence, be
‘trained’ on data). Missing information can be handled
systematically, by summing out (as with our Felsenstein
wildcards) or by MCMC. Sampling is a natural solution
to the problem of local maxima. Access to the posterior
distribution (either directly or via MCMC) leads to mean-
ingful confidence estimates for suboptimal alignments
and offers a principled way to integrate other probabilistic
methods such as sampling over trees or incorporating
other data types. Marginal distributions at individual tree
nodes can be used to generate profile HMMs customized
for particular species or phyla.

In view of these enticements, we are encouraged by the
performance of Handel on the BAliBASE benchmark.
The mean residue pair fidelity (SPS) was only 13% lower
than CLUSTALW, which seems remarkable considering the
parametric simplicity of the links model: a substitution
matrix, an indel rate and a mean sequence length are
all it needs. To get this close to CLUSTALWs accuracy
without the use of affine gap penalties or hydrophobic core
modeling is highly unexpected. We are of the opinion that
these results confirm the merit in pursuing probabilistic
multiple alignment and we hope that our algorithms—and
the freely available source code to Handel—may be of
assistance to researchers interested in developing more
sophisticated evolutionary models.

Regarding such improved models, there are many ways
forward. The BAliBASE benchmark results suggest that
local alignment, affine gaps and some kind of profiling
(or mutation rate heterogeneity) might be of benefit. Two
of these areas were addressed by Thorne et al. (1992)
who proposed adapting the links model to include: (i)
‘fast’ and ‘slow’ mutation zones and (ii) links spanning
multiple residues, to allow for affine-type indels. Both
of these modifications involve some demarcation of the
sequence into regions as a necessary part of inference.
The first modification (fast and slow zones) might be
used to implement a local algorithm, by flanking a
slow zone (the alignable region) with two very fast
zones (the unalignable region). Another possibility is

some kind of fusion between the links model and the
tree HMM (Mitchison, 1999b). One concept that might
be usefully imported from tree HMMs is the idea of
having multiple classes of column for different sites (e.g.
hydrophobic, hydrophilic, small residues, etc.) (Mitchison
and Durbin, 1995). This is somewhat similar to the use
of Dirichlet mixture priors in HMM profiling (Sjölander
et al., 1996), albeit with less learning potential. For
expanded learning potential, one might not wish to
train entire substitution rate matrices on sparse datasets
but instead to constrain the parameter space, so that
(for example) one learns only the equilibrium residue
distribution (Bruno, 1996). One can also imagine nested
birth–death processes; for example, a birth–death process
for protein domains, where each domain supported a
birth–death process for residues (i.e. a singly-nested
links model) (Thorne, 2000). One could then introduce
multiple different classes of domain with different indel
and substitution parameters. (Possibly ‘structural feature’
would be a more appropriate nomenclature than ‘domain’
here.) There may be many other interesting stochastic
processes whose joint distributions converge (exactly or
approximately) on hidden Markov models or indeed on
stochastic context-free or higher power grammars.

These are just a few of the options available to model de-
velopers. As more genomes are sequenced and databases
inexorably grow, well-defined models will be the only
maintainable option for large-scale database clustering
and organization. Probabilistic modeling may not be
immortal. However, in the absence of a full solution to
the protein folding problem, it may be safe to say that the
death of this link is yet some way off.
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